MEMS Based Pedestrian Navigation System

نویسندگان

  • Seong Yun Cho
  • Chan Gook Park
چکیده

In this paper we present a micro-electrical mechanical system (MEMS) based pedestrian navigation system (PNS) for seamless positioning. The sub-algorithms for the PNS are developed and the positioning performance is enhanced using the modified receding horizon Kalman finite impulse response filter (MRHKF). The PNS consists of a biaxial accelerometer and a biaxial magnetic compass mounted on a shoe. The PNS detects a step using a novel technique during the stance phase and simultaneously calculates walking information. Step length is estimated using a neural network whose inputs are the walking information. The azimuth is calculated using the magnetic compass, the walking information and the tilt compensation algorithm. Using the proposed sub-algorithms, seamless positioning can be accomplished. However, the magnetic compass based azimuth may have an error that varies according to the surrounding magnetic field. In this paper, the varying error is compensated using the MRHKF filter. Finally, the performance enhanced seamless positioning is achieved, and the performance is verified by experiment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PDR/INS/WiFi Integration Based on Handheld Devices for Indoor Pedestrian Navigation

Providing an accurate and practical navigation solution anywhere with portable devices, such as smartphones, is still a challenge, especially in environments where global navigation satellite systems (GNSS) signals are not available or are degraded. This paper proposes a new algorithm that integrates inertial navigation system (INS) and pedestrian dead reckoning (PDR) to combine the advantages ...

متن کامل

Low-Cost BD/MEMS Tightly-Coupled Pedestrian Navigation Algorithm

Abstract: Pedestrian Dead Reckoning (PDR) by combining the Inertial Measurement Unit (IMU) and magnetometer is an independent navigation approach based on multiple sensors. Since the inertial component error is significantly determined by the parameters of navigation equations, the navigation precision may deteriorate with time, which is inappropriate for long-time navigation. Although the BeiD...

متن کامل

Design of Indoor Pedestrian Navigation System based on MEMS

This paper presents an indoor pedestrian navigation system based on MEMS inertial sensor. The system is implemented by PDR, The course estimation is based on the data fusion between gyro and electronic compass; Step size estimation is based on particle swarm optimization of the Fourier neural network step size estimation algorithm, and complete the step dynamic estimation; Pedometer adopts the ...

متن کامل

Integrating Low Cost IMU with Building Heading In Indoor Pedestrian Navigation

This paper proposes an integration of ‘building heading’ information with ZUPT in a Kalman filter, using a shoe mounted IMU approach. This is done to reduce heading drift error, which remains a major problem in a standalone shoe mounted pedestrian navigation system. The standalone system used in this paper consists of only single low cost MEMS IMU that contains 3-axis accelerometers and gyros. ...

متن کامل

GPS/INS Integration for Vehicle Navigation based on INS Error Analysis in Kalman Filtering

The Global Positioning System (GPS) and an Inertial Navigation System (INS) are two basic navigation systems. Due to their complementary characters in many aspects, a GPS/INS integrated navigation system has been a hot research topic in the recent decade. The Micro Electrical Mechanical Sensors (MEMS) successfully solved the problems of price, size and weight with the traditional INS. Therefore...

متن کامل

New Map - Matching Algorithm Using Virtual Track for Pedestrian Dead Reckoning

© 2010 Seung Hyuck Shin et al. 891 In this paper, a map-matching (MM) algorithm which combines an estimated position with digital road data is proposed. The presented algorithm using a virtual track is appropriate for a MEMS-based pedestrian dead reckoning (PDR) system, which can be used in mobile devices. Most of the previous MM algorithms are for car navigation systems and GPS-based navigatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005